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Abstract

Lewbel and Pendakur (2008) develop the idea of implicit Marshallian demands. Implicit Mar-

shallian demand systems allow the incorporation of both unobserved preference heterogeneity and

complex Engel curves into consumer demand analysis, circumventing the standard problems asso-

ciated with combining rationality with either (or both) unobserved heterogeneity and high rank in

demand. They also develop the Exact A¢ ne Stone Index (EASI) implicit Marshallian demand

system wherein much of the demand system is linearised and thus relatively easy to implement and

estimate. The current paper o¤ers a less technical introduction to implicit Marshallian demands

in general and to the EASI demand system in particular. I show how to implement the EASI

demand system, paying special attention to tricks which allow the investigator to further simplify

the problem without sacri�cing too much in terms of model �exibility. STATA code to implement

the simpli�ed models is included throughout the text and in an appendix.

Keywords: consumer demand analysis; EASI; implicit Marshallian demands; complex Engel

curves; unobserved preference heterogeneity; rationality
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1 Introduction

Empirical work with large consumer expenditure data sets �nds Engel curves (budget-share functions

over expenditure, holding prices constant) that are quite di¤erent across goods. For example, some goods

have Engel curves that are close to linear or quadratic, while others are more S-shaped (see, Blundell,

Chen and Kristensen (2007). Typical parametric demand models cannot encompass this variety of

shapes. Demand models whose Engel curves are additive in functions of expenditure (for example,

polynomials in log-expenditure) are constrained by Gorman�s (1981) rank restriction: no matter how

many Engel curves are in the model, they must be expressed as linear combinations of at most 3 functions

of expenditure. This is of course satis�ed by budget-shares which are quadratic in log-expenditure: the

3 functions are a constant, the log of expenditure and its square. However, it is hard to see an a priori

reason that, for example, all 100 Engel curves in a 100-good demand system could be reduced to linear

combinations of just 3 shapes (functions of expenditure).
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Other current research shows the importance of allowing for unobserved preference heterogeneity

in demand systems, and the di¢ culty of doing so in a coherent fashion. In typical consumer demand

models, observables like prices, expenditure and household demographics explain no more than half the

variation in budget shares. The rest is left to the usual suspects, including measurement error and

unobserved heterogeneity in the preferences of consumers. Unfortunately, in most empirical models of

consumer demand, model error terms cannot be interpreted as random utility parameters representing

unobserved heterogeneity.

It is easy to see how unoberved preference heterogeneity complicates things via a simple example. If

a consumer has a particularly high unobserved preference parameter for, say, food, then she will allocate

a large budget share to food. This will manifest as a large positive �error term�in the food share for her.

However, this same consumer will be more a¤ected by food price increases than other consumers, because

she spends more on food. So, the income e¤ect of the price change will be large for her. Thus, income

e¤ects are tied to unobserved preference heterogeneity. If budget shares themselves are nonlinear in

income, then this chain of e¤ects induces nonlinearity in the e¤ects of the unobserved parameter on the

consumer�s chosen budget shares, which makes estimation hard. This is essentially the same argument

as that presented for observed preference heterogeneity in Blundell, Duncan and Pendakur (1998) and

Pendakur (1999). These ideas are developed at length in Brown and Walker (1989), McFadden and

Richter (1990), Brown and Matzkin (1998), Lewbel (2001), and Beckert and Blundell (2004).

Although a priori we have no reason to think that Engel curves lack variety in shapes, or that

observable variables capture all the varation in preferences, the Almost Ideal Demand (AID) model

(Deaton and Muellbauer 1980), which has linear Engel curves for all goods and does not incorporate

unobserved heterogeneity, remains very popular. This popularity is at least partly because alternative

models involve nonlinear functions of many prices and parameters, which are often numerically di¢ cult

or intractible to implement. In addition, the AID model has a very convenient approximate form which

may be estimated by linear methods.

Lewbel and Pendakur (2008) develop an approach to the speci�cation and estimation of consumer

demands that addresses the above issues while maintaining the simplicity of the AID model. Their

contribution hinges on the development of implicit Marshallian demands which, in contrast to explicit

(or, �normal�) Marshallian demands, express budget shares as an implicit function of observable prices,

expenditures and demographic characteristics. Econometrically, implicit Marshallian demands have the

dependent variable on both sides of the equation: that is, implicit Marshallian demand systems su¤er

from endogeneity. This econometric problem is easily solved via instrumental variables. However,

relaxing the restriction that Marshallian budget-share equations have an explicit solution allows us to

solve the problems described above.

2 An Extended Example

Consider a consumer with nominal total expenditures x that faces the J�vector of prices p = [p1; :::; pJ ].

Assume she chooses a bundle of goods, described by the J� vector of budget shares w = [w1; :::; wJ ],

to maximize utility given her linear budget constraint. Let x = C(p; u) be her cost function giving the
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minimum nominal total expenditure to attain a utility level, u, given prices p.

Suppose that we can write budget-shares as a function of prices, expenditures and budget-shares

themselves, that is, we can write:

wj =  j(p1; :::; pJ ; x; w1; :::; wJ);

for all j = 1; :::; J . This is an implicit Marshallian demand system. We say that it is implicit because

budget-shares appear on both the left- and the right-hand sides. It is a Marshallian (uncompensated),

rather than a Hicksian (compensated), demand system because it is expressed in terms of expenditure,

x, and is not expressed in terms of utility, u. If w1; :::; wJ were not present on the right-hand side,

this would reduce to an explicit (or, �normal�) Marshallian demand system. Thus, implicit Marshallian

demand systems are more general than Marshallian demand systems, because Marshallian demand

systems can be seen as imposing a restriction on implicit Marshallian demand systems. It is this

increased generality that allows us to solve the problems identi�ed above.

The value of implicit Marshallian demands is most easily seen by example. A simple example

will be extended step-by-step to build up to an empirical model that can capture everything captured

in other parametric models of demand. In addition, the �nal empirical model will be one that can

accomodate arbitrary variation in observable demographic characteristics, arbitrarily complex Engel

curves and additive unobserved preference heterogeneity. However, it is best to start with a very simple

example.

Let !(p; u) =
�
!1(p; u); :::; !J(p; u)

�
be the Hicksian (or, compensated) budget-share functions

associated with the utility function. By Shephard�s Lemma, these are equal to the price elasticity

of the cost function: !j(p; u) = @ lnC(p; u)=@ ln pj . Here, budget-shares are expressed as functions of

the price vector p and attained the utility level u, and can easily be speci�ed to have many desirable

properties. Unfortunately, since they depend on unobserved utility, u, they are not typically used in

demand analysis. However, with implicit Marshallian demands, one can exploit the nice features of

Hicksian demands while maintaining dependence of demands on observable variables only. Basically, the

strategy is to de�ne Hicksian budget-share functions that �look right�and �nd an observable function of

prices, expenditure and budget-shares that equals utility, and substitute that function into the Hicksian

demands.

Say we wanted the Hicksian budget-share functions to be completely unrelated across goods and

given by mj(u) for j = 1; :::; J . Working backwards through Shephard�s Lemma, this implies a cost

function

lnC(p; u) = u+
JX
j=1

mj(u) ln pj ; (1)

with Hicksian budget-share functions

!j(p; u) = mj(u) (2)

for j = 1; :::; J . This Hicksian budget-share system has one very nice characteristic: the budget-share

functions mj(u) are completely unrestricted and unrelated across budget-shares j = 1; :::; J . However,

like all Hicksian demands, they depend on utility rather than on an observable like expenditure.
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Now, assume that budget-shares, wj = !j(p; u), are observable in the data. In this case, knowledge

of budget shares allows us to express utility in terms of observables. Manipulating (1), and subsitituting

x for C(p; u) and wj for !j(p; u), gives

u = lnx�
JX
j=1

wj ln pj : (3)

Here, utility is expressed in terms of observables: expenditure, x, prices, p1; :::; pJ and budget-shares,

w1; :::; :wJ .

Next, substituting (3) for u in (2) gives implicit Marshallian demands

wj = mj(lnx�
JX
j=1

wj ln pj); (4)

or, equivalently,

wj = mj(y); (5)

where y is �implicit utility�given by

y = lnx�
JX
j=1

wj ln pj : (6)

The presence of budget-shares on both sides of (4) means that budget-shares are implicitly de�ned.

But, the absence of utility, u, means that it is implicitly de�ned in terms of observables. These implicit

Marshallian budget-share functions can have any shapes at all over y. That is, they are not constrained

by Gorman�s rank restrictions.

This general feature of these models is important for at least two reasons. First, for a 100 good

demand system, there could be 100 distinct shapes for the 100 Engel curves. That is, the demand

system may have any rank. Second, the researcher need not know the exact parametric structure of

budget-share functions beforehand. That is, there is room to let the data do the talking. For example,

one could estimate the budget-share system as a 10th order polynomial in y. If all the orders matter,

the data have spoken. If not, the data have still spoken. One cannot do this with explicit Marshallian

demand systems that are polynomial in expenditure. Given Gorman�s �nding that at most 3 terms

could matter, what would one do if 4 (or more) of the terms were statistically signi�cant in at least one

budget-share function?

Given a functional form for mj(y), this implicit Marshallian budget-share system is easy to estimate

via instrumental variables. For example, if mj(y) is a 5th order polynomal in y, one could estimate (5)

via two-stage least squares the linear regression of wj on a constant plus 5 powers of y. The choice of

instruments is not a di¢ cult one because the model gives the structural equation for the endogenous

regressor: equation (6) says that y depends on exogenous lnx and ln pj . Thus, any functions of these

exogenous variables are allowable instruments. Thus, if y1-y5 were powers of y, lnx1-lnx5 were powers of

lnx and lnp1-lnpJ were the the logged price vector, then one could estimate the model with the STATA

code:

ivregress 2sls w1 (y1-y5=lnx1-lnx5 lnp1-lnpJ)

...
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ivregress 2sls wJ (y1-y5=lnx1-lnx5 lnp1-lnpJ)

Here, the J�th equation does not add any information, since its parameters could be obtained via the

adding up restriction (
PJ

j=1 w
j = 1). However, since the equations are estimated separately, choosing

to estimate rather than calculate the parameters of the last equation is immaterial to the resulting

estimates.

Now consider adding unobserved preference heterogeneity to the model. Let " =
�
"1; :::; "J

�
be a

vector of unobserved preference heterogeneity parameters for the consumer, and let E ["] = 0J . We

want " to come in to budget-share functions as additive error terms. Adding the argument to the

cost function, we let C(p; u; ") be the minimum total expenditure for a consumer with unobserved

heterogeneity parameters " to attain a utility level u when facing prices p. Again, it is easiest to

consider the Hicksian budget-share system �rst. If we want "j to enter the Hicksian budget-share

function as an additive component, then it must multiply ln pj in an additive component in the (logged)

cost function. Thus, we write the cost function

lnC(p; u; ") = u+
JX
j=1

mj(u) ln pj +
JX
j=1

"j ln pj ; (7)

which gives (by Sheppard�s Lemma) Hicksian budget-share functions

!j(p; u; ") = mj(u) + "j : (8)

Proceeding as before, manipulating (7), and subsitituting x for C(p; u; ") and wj for !j(p; u; "), gives

implicit utility y = u = lnx �
PJ

j=1 w
j ln pj as before. Thus, implicit Marshallian budget shares are

given by

wj = mj(y) + "j

and, as before, implicit utility is given by

y = lnx�
JX
j=1

wj ln pj :

Estimation of this model proceeds exactly as in the model above which lacks unobserved preference

heterogeneity, and could use the same STATA code. Here, the �error terms� in the budget-share

equations are interpreted as unobserved preference heterogeneity parameters. Because these parameters

show up in both budget-share functions and the cost function, they are relevant factors in both predicting

demand and in assessing the cost of living as prices change (these are considered in Section 6).

From its de�nition in equation (6), one can see that if the price vector were 1J , so that the log-price

vector were 0J , then y = lnx. So, implicit utility y is a log-money-metric representation of utility for

a unit price vector (for more on this, see Pendakur and Sperlich 2008). Thus, we could equivalently

call y as log real-expenditures. Lewbel and Pendakur (2008) call the cost function (7) and associated

implicit Marshallian demand system as Exact Stone Index cost and demands. This is because the stone

index (Stone 1954), given by �Jj=1
�
pj
�wj
, is the exact de�ator which converts nominal expenditures x

into real expenditures exp (y) (exponentiate equation (6) to see this).
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Exact Stone Index (ESI) implicit Marshallian demands have a lot going for them as an empirical

approach: (1) budget-share functions can have any degree of variety of shapes across goods; (2) un-

observed preference heterogeneity is incorporated in a simple and intuitive fashion, and, because it is

embedded in the cost function, is integrated into welfare analysis. However, ESI demands have one

very large drawback: they incorporate prices into demands solely through implicit utility y. That is,

Hicksian budget-share functions do not respond to prices at all. Thus, although pleasing to the eye,

ESI demands are not suitable for demand analysis in the real world. However, a simple modi�cation,

which Lewbel and Pendakur (2008) call Exact A¢ ne Stone Index cost and demands, incorporates price

e¤ects in a simple and tractable way.

3 The EASI Demand System

Now, consider a modi�cation of the ESI cost function that incorporates both prices and observable

demographic characteristics. Let z = [z1; :::; zT ] be a vector of demographic characteristics of the

consumer and let the �rst element of z be a constant, so that z1 = 1. Let z = [1; 0; :::; 0] be a vector

of zeroes with a leading 1, and let z be the value of z for a reference type of consumer. Add this new

argument to the cost function so that C(p; u; z; ") is the minimum total expenditure for a consumer

with observed characteristics z and unobserved characteristics " to attain a utility level u when facing

prices p. Essentially, we incorporate prices by modifying (7) to include quadratic form in log-prices, and

we include demographic characteristics z in the mj functions. This results in an Exact A¢ ne Stone

Index (EASI) cost function of the form

lnC(p; u; z; ") = u+

JX
j=1

mj(u; z) ln pj +
1

2

JX
j=1

JX
k=1

ajk (z) ln pj ln pk +

JX
j=1

"j ln pj : (9)

Sheppard�s Lemma gives Hicksian budget-share functions as

!j(p; u; z; ") = mj(u; z) +
JX
k=1

ajk (z) ln pk + "j ; (10)

where ajk (z) = akj (z) for all j; k. Note that

JX
j=1

wj ln pj =
JX
j=1

mj(u; z) ln pj +
JX
j=1

JX
k=1

ajk (z) ln pj ln pk;

which is missing the 1
2 multiplying the quadratic form in (9). Thus, implicit utility is given by

y = u = lnx�
JX
j=1

wj ln pj +
1

2

JX
j=1

JX
k=1

ajk (z) ln pj ln pk: (11)

Here, the log of the de�ator that exact ly converts nominal expenditures into real expenditures isPJ
j=1 w

j ln pj � 1
2

PJ
j=1

PJ
k=1 a

jk (z) ln pj ln pk, which is a¢ ne in the Stone Index (hence the name).

Implicit Marshallian budget shares are obtained by substituting y (equation (11)) for u in the Hicksian

budget-share functions (10):

wj = mj(y; z) +
JX
k=1

ajk (z) ln pk + "j ; (12)
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where ajk (z) = akj (z) for all j; k.

This EASI implicit Marshallian demand system has several features in common with traditional

demand systems, such as the popular Quadratic Almost Ideal (QAI) demand system of Banks, Blundell

and Lewbel (1997). First, it is easy to estimate via iterative linear methods, which we describe below.

Second, there are linear price e¤ects which may depend on observable characteristics (ajk (z)). Third,

the functions mj(y; z) can be independent of y as in homothetic demand systems, linear in y as in the

Almost Ideal demand system, or quadratic in y as in the QAI demand system.

In addition, this EASI implicit Marshallian demand system has several clear advantages over tradi-

tional demand systems. First, the functions mj(y; z) are completely unrestricted in their dependence

on implicit utility y and observable demographic characteristics z. Thus, Engel curves may have any

shape and any degree of variety across goods. Nothing about the shape of Engel curves need be known

in advance. Second, unobserved preference heterogeneity is captured through the parameters "j . These

parameters show up as �error terms�in the estimating equation and as cost shifters in the cost function.

4 EASI Estimation

Estimation of (12) is complicated by two factors: (1) is it slightly nonlinear; and (2) the equation system

is endogenous due to the presence of wj on both sides. The nonlinearity is due to the fact that mj(y; z)

may be nonlinear in y and that y is itself a function of the vectors w, p and z. For the purposes of

showing how to implement estimation, we will parameterise mj(y; z) and ajk (z) with simple additive

structures. Consider mj(y; z) additively separable in y; z, linear in z and polynomial in y, given by

mj(y; z) =
RX
r=1

bjry
r +

TX
t=1

gjt zt, (13)

and ajk (z) given by

ajk (z) = ajk (14)

where ajk = akj for all j; k. Note that because z1 is equal to 1, we have for the reference consumer (with

z = [1; 0; :::; 0])

mj(y; [1; 0; :::; 0]) = gj1 +
RX
r=1

bjry
r.

These choices results in implicit utility given by

y = lnx�
JX
j=1

wj ln pj +
1

2

JX
j=1

JX
k=1

ajk ln pj ln pk (15)

Substituting (15) into (13) and substituting (13) and (14) into (12) yields estimating equations given by

wj =
RX
r=1

bjr (y)
r
+

TX
t=1

gjt zt +
JX
k=1

ajk ln pk + "j ; (16)

or, equivalently,

wj =
RX
r=1

bjr

0@lnx� JX
j=1

wj ln pj +
1

2

JX
j=1

JX
k=1

ajk ln pj ln pk

1Ar

+
TX
t=1

gjt zt +
JX
k=1

ajk ln pk + "j : (17)
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Here, the parameters bjr control the shape of the Engel curve. The only restriction is that R < J (see

Lewbel 1991): otherwise, Engel curves can be arbitrarily complex. The parameters gjt allow for demo-

graphic shifters in budget shares, and the parameters ajk govern price e¤ects. Finally, the parameters

"j (or, error terms) incorporate unobserved preference heterogeneity into budget-shares and the cost

function.

This EASI equation system is nonlinear and endogenous. The nonlinearity in the parameters is

driven solely by the fact that br multiplies (a power of) ajk. The endogeneity arises from the fact

that budget-shares wj , j = 1; :::; J are expressed implicitly and are thus on both sides of the system

of equations. Endogenous nonlinear systems may be estimated e¢ ciently via the Hansen�s (1982)

Generalised Method of Moments (GMM).

Familiar software, such as GAUSS, MATLAB, R and SAS, allow the estimation by GMM of nonlinear

endogenous systems of equations. However, such estimation can be cumbersome and there are legitimate

problems with overidenti�ed GMMmodels in small samples. For these reasons, the next four subsections

consider how to estimate EASI models via more familiar linear methods. In particular, since the

nonlinearity in (17) is similar to the type of nonlinearity discussed in Blundell and Robin (1999), an

iterated linear estimator similar to theirs is discussed below.

4.1 Approximate Models

Before turning to iterated linear estimation to estimate the EASI demand system, I note that Lewbel

and Pendakur (2008) provide some evidence that both the nonlinearity and endogeneity are relatively

small issues in practise. They discuss an �approximate model�which replaces y with

ey = lnx� JX
j=1

wj ln pj

and estimates via OLS. Here, ey is the log of Stone-index de�ated nominal expenditures. Applied to
(17), this gives

wj =
RX
r=1

bjr (ey)r + TX
t=1

gtzt +
JX
k=1

ajk ln pk + "j :

If ey1-eyR were R powers of ey and z1-zT were the a constant plus T �1 other demographic characteristics,
one would estimate the approximate model with the following STATA code:

regress w1 ey1-eyR z1-zT p1-pJ, noconst
...

regress wJ ey1-eyR z1-zT p1-pJ, noconst
Here, the noconst option is used because z1 is the constant term. In their empirical work with

Canadian price and expenditure data, they �nd that ey is so highly correlated with y that ine¢ cient,
endogeneity-polluted and linearised OLS regression performs almost as well as fully e¢ cient endogeneity-

corrected nonlinear GMM estimation.
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4.2 Iterated Linear Estimation

Blundell and Robin (1999) show that the QAI can be estimated by iterated linear methods. The QAI

is very similar to (17) with R = 2. The only two di¤erences are that, in the QAI,
PJ

j=1 w
j ln pj does

not appear on the right hand side, and bj2 gets divided by a price index depending on b
j
1. An iterated

linear strategy one could use to estimate (17) is as follows:

� Let ajk0 denote initial values for ajk:

� Compute

y0 = lnx�
JX
j=1

wj ln pj +
1

2

JX
j=1

JX
k=1

ajk0 ln p
j ln pk:

� let tol=some small value; let n = 1

� loop while crit<tol:

1. Estimate the linear model (subscripts for individual observations are suppressed):

wj =

RX
r=1

bjr (yn�1)
r
+

TX
t=1

gjt zt +

JX
k=1

ajk ln pk + "j :

2. denote estimated values of ajk as ajkn , and compute

yn = lnx�
JX
j=1

wj ln pj +
1

2

JX
j=1

JX
k=1

ajkn ln p
j ln pk:

3. compute a criterion assessing the change yn � yn�1, such as the max of this change over all

the individuals.

4. let n = n+ 1

� Retain the �nal estimates bjr, gt and ajk at convergence of yn.

Note that the linear model to be estimated at each linear iteration is an endogenous model. The

next subsection considers exactly what instruments can and should be used.

4.3 Instrumental Variables Estimation

The iterated linear estimation described above has an endogenous regressor whose structure is given by

the model. The endogenous regressors are R powers of yn, and yn is a function of exogenous lnx, zt

and ln pj (as well as endogenous wj). If lnx, zt and ln pj are exogenous, then any functions of them

that are correlated with y are allowable as instruments. STATA code for each instrumental variables

linear regression is easy to construct. For example, if y1-yR were R powers of yn, then the following

would implement the regression for each iteration:

ivregress 2sls w1 z1-zT p1-pJ (y1-yR=lnx1-lnxR p1-pJ)

...

ivregress 2sls wJ z1-zT p1-pJ (y1-yR=lnx1-lnxR p1-pJ)
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Although these instruments satisfy exogeneity and are correlated with the endogenous regressor y,

they may not have the maximum possible correlation with y. Because the structure of y is completely

known, it is possible to improve on these instruments, in the sense of increasing their correlation with

y. In particular, given a set of �xed exogenous parameter values ajk and �xed exogenous budget-shares

wj , one could substitute these into (15) to generate an instrument y:

y = lnx�
JX
j=1

wj ln pj +
1

2

JX
j=1

JX
k=1

ajk ln pj ln pk: (18)

The exogenous budget-shares wj could be the sample average budget-share vector. The values ajk could

be estimated values from an initial estimator. Note that in the iterated estimation, the instrument would

not be updated at each iteration. If y1-yR were R powers of y, then each iteration could be estimated

with the following STATA code:

ivregress 2sls w1 z1-zT p1-pJ (y1-yR=y1-yR)

...

ivregress 2sls wJ z1-zT p1-pJ (y1-yR=y1-yR)

4.4 Imposing Symmetry with Linear System Estimation

Up to now, estimation has been equation-by-equation. This is consistent with the possibility that

Slutsky symmetry holds, but does not impose Slutsky symmetry. That is, it allows ajk = akj for

all j; k, but does not impose that restriction. Imposition of symmetry requires the use of system

methods. In general one could use nonlinearly restricted GMM methods. However, the iterative linear

procedure described above works here, too. It is relatively easy to embed three stage least squares linear

endogenous system estimation in the estimation step (step 1) of the iterative procedure. Three stage

least squares would proceed by specifying the instruments as above and imposing the linear restrictions

ajk = akj for all j; k.

In STATA, one would set up global macros for each equation and for the cross-equation restrictions

prior to iteration:

global eq1 "w1 y1-yR z1-zT p1-pJ"

...

global eq{J-1} "w{J-1} y1-yR z1-zT p1-pJ"

constraint 12 [w1]p2=[w2]p1

...

constraint {J-2}{J-1} [w{J-2}]p{J-1}=[w{J-1}]p{J-2}

Then, at each iteration�s estimation step, one would implement three stage least squares with the

STATA command:

reg3 $eq1 ... $eq{J-1}, endog(y1-yR) exog(y1-yR) constraints(12...{J-2}{J-1})

Here, curly brackets indicate indices over goods (prices). Because this implementation estimates

the whole equation system, the redundant �nal equation must be dropped, as well as all restrictions

associated with it. As noted above, Lewbel and Pendakur (2008) �nd that the approximate model

performs tolerably well. However, they note that its weakest point in their empirical exercise was
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the failure of equation-by-equation OLS to impose symmetry. That is, whereas dealing with the

nonlinearity and endogeneity of the EASI estimating equations doesn�t change the estimates much in

practise, imposing Slutsky symmetry via cross-equation restrictions does a¤ect the resulting estimates

in important ways.

5 EASI Extensions

The EASI estimation model given in equation (16) allows for additively separable e¤ects of implicit

utility, y, demographic characteristics, z, prices, p, and unobserved preference heterogeneity, ". This

approach can also easily accomodate all two-way interactions among y, z and p. Consider another cost

function in the EASI class:

lnC(p; u; z; ") = u+
JX
j=1

mj(u; z) ln pj+
1

2

JX
j=1

JX
k=1

ajk (z) ln pj ln pk+
1

2

JX
j=1

JX
k=1

bjk ln pj ln pku+
JX
j=1

"j ln pj :

(19)

Sheppard�s Lemma gives Hicksian budget-share functions as

!j(p; u; z; ") = mj(u; z) +
JX
k=1

ajk (z) ln pk +
JX
k=1

bjk ln pku+ "j ; (20)

where ajk (z) = akj (z) and bjk = bkj for all j; k. A little algebra reveals that implicit utility is given by

y = u =
lnx�

PJ
j=1 w

j ln pj + 1
2

PJ
j=1

PJ
k=1 a

jk (z) ln pj ln pk

1� 1
2

PJ
j=1

PJ
k=1 b

jk ln pj ln pk
; (21)

which is a¢ ne in the log of stone-index de�ated nominal expenditures, lnx�
PJ

j=1 w
j ln pj .

To parameterise, consider modifying mj(y; z) to include an interaction between y and z:

mj(y; z) =

RX
r=1

bjry
r +

TX
t=1

gjt zt +

TX
t=2

hjtzty.

Note that since the �rst element of z is 1, the trailing summation is from 2; ::; T (the hj1 e¤ect is captured

by bj1). Next, allow for an interaction between p and z by letting a
jk (z) be linear in z:

ajk (z) =
TX
t=1

ajktzt

Substituting these into (21) and into (20) yields the following implicit Marshallian demand system:

wj =
RX
r=1

bjry
r +

TX
t=1

gjt zt +
TX
t=2

hjtzty +
JX
k=1

TX
t=1

ajktzt ln p
k +

JX
k=1

bjk ln pky + "j ; (22)

where

y =
lnx�

PJ
j=1 w

j ln pj + 1
2

PJ
j=1

PJ
k=1

PT
t=1 a

jktzt ln p
j ln pk

1� 1
2

PJ
j=1

PJ
k=1 b

jk ln pj ln pk
:

The demand system (22) has additively separable e¤ects in y, z and lnp (the direct e¤ect goes

through ajk1z1 = ajk1). In addition, it has additive two-way interactions for zty, zt ln pk and ln pky.

Iterative linear estimation proceeds as outlined above. STATA code to estimate EASI models with

and without two-way interactions is provided in the appendix and online at www.sfu.ca/~pendakur and

online in the American Economic Review Electronic Archive.
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6 EASI-to-Use

Because the EASI demand systems are dual to cost functions, they are very easy to use for consumer

surplus estimation. Consider evaluating the cost to an individual of a price change. A consumer surplus

measure for the price change from p0 to p1 is the log cost of living index, which for the cost function

(19) is given by

ln

�
C(p1; u; z; ")

C(p0; u; z; ")

�
=

JX
j=1

mj(u; z)(ln pj1 � ln p
j
0) +

1

2

JX
j=1

JX
k=1

ajk (z) ln pj1 ln p
k
1 �

1

2

JX
j=1

JX
k=1

ajk (z) ln pj0 ln p
k
0 +

1

2

JX
j=1

JX
k=1

bjk ln pj1 ln p
k
1u�

1

2

JX
j=1

JX
k=1

bjk ln pj0 ln p
k
0u+

JX
j=1

"j(ln pj1 � ln p
j
0)

If C(p0; u; z; ") is the cost function of a household that has budget shares w0 and implicit utility level y,

and if we use the parameterised model (22), then this expression can be rewritten in terms of observables

and parameters as

ln

�
C(p1; u; z; ")

C(p0; u; z; ")

�
=

JX
j=1

wj0(ln p
j
1� ln p

j
0)+

1

2

JX
j=1

JX
k=1

 
TX
t=1

ajktzt + b
jky

!�
ln pj1 � ln p

j
0

��
ln pj1 � ln p

j
0

�
;

or, in the case without two-way interactions,

ln

�
C(p1; u; z; ")

C(p0; u; z; ")

�
=

JX
j=1

wj0(ln p
j
1 � ln p

j
0) +

1

2

JX
j=1

JX
k=1

ajk
�
ln pj1 � ln p

j
0

��
ln pj1 � ln p

j
0

�
:

The �rst term in this cost of living index is the Stone index for the price change. Such indices are

commonly used on the grounds that they are appropriate for small price changes and that they allow

for unobserved preference heterogeneity across households. The presence of the second term allows one

to explicitly model substitution e¤ects, and so consider large price changes, while also accounting for

the behavioral importance of both observed and unobserved heterogeneity.

Demand elasticities are also easy to compute in this framework. De�ne semielasticities to be deriva-

tives of budget shares with respect to log prices, lnp, implicit utility, y, and demographic characteristics,

z. Note that derivatives with respect to implicity utility, y, are attained by di¤erentiating Hicksian bud-

get shares with respect to utility, u, and these are independent of monotone transformations of utility.

The semielasticity of a budget share can be converted into an ordinary elasticity of budget share by

dividing by that budget share. Hicksian (compensated) price semielasticities for the EASI cost function

(19) and implicit Marshallian demand system (22) are given by

@!j(p; u; z; ")

@ ln pk
= ajk(z) + bjku = ajk(z) + bjky:

Similarly, derivatives with respect to y, interpretable as real expenditure semi-elasticities, are given by

@!j(p; u; z; ")

@u
=
@!j(p; u; z; ")

@y
=
@mj(p; u; z; ")

@y
+

JX
k=1

bjk ln pk;

and semielasticities with respect to observable demographics z are

@!j(p; u; z; ")

@zt
=
@mj(p; u; z; ")

@zt
+

JX
k=1

@ajk(z)

@zt
ln pk:
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Substituting the relevant parameters from the parameterised demand system (22), we have

@!j(p; u; z; ")

@ ln pk
=

TX
t=1

ajktzt + b
jky;

@!j(p; u; z; ")

@u
=

RX
r=1

bjrry
r�1 +

TX
t=2

hjtzt +
JX
k=1

bjk ln pk; (23)

and
@!j(p; u; z; ")

@zt
= gjt + h

j
ty +

JX
k=1

ajkt ln pk:

7 Conclusions

The EASI demand system recently proposed by Lewbel and Pendakur (2008) aims to solve several

longstanding problems in consumer demand estimation: (1) it allows for arbitrarily complex Engel curves

which are arbitrarily varied across goods; (2) it allows for the incorporation of unobserved preference

heterogeneity; and (3) an approximate model can be estimated by linear methods with the exact model

being estimable by iterative linear methods.

8 Appendix: STATA Code

8.1 EASI with No Interactions

* Tricks with Hicks: The EASI demand system

* Arthur Lewbel and Krishna Pendakur

* 2008, American Economic Review

* Herein, �nd Stata code to estimate a demand system with neq equations, nprice prices,

* ndem demographic characteristics and npowers powers of implicit utility

set more o¤

macro drop _all

use "C:nprojectsnhixtrixnrevisionnhixdata.dta", clear

* set number of equations and prices and demographic characteristics and convergence criterion

global neqminus1 "7"

global neq "8"

global nprice "9"

global ndem 5

global npowers "5"

global conv_crit "0.000001"

*data labeling conventions:

* budget shares: s1 to sneq

* prices: p1 to nprice

* implicit utility: y, or related names

* demographic characteristics: z1 to zTdem
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g s1=sfoodh

g s2=sfoodr

g s3=srent

g s4=soper

g s5=sfurn

g s6=scloth

g s7=stranop

g s8=srecr

g s9=spers

g p1=pfoodh

g p2=pfoodr

g p3=prent

g p4=poper

g p5=pfurn

g p6=pcloth

g p7=ptranop

g p8=precr

g p9=ppers

* normalised prices are what enter the demand system

* generate normalised prices, backup prices (they get deleted), and Ap

forvalues j=1(1)$neq {

g np�j�=p�j�-p$nprice

}

forvalues j=1(1)$neq {

g np�j�_backup=np�j�

g Ap�j�=0

}

g pAp=0

*list demographic characteristics: �ll them in, and add them to zlist below

g z1=age

g z2=hsex

g z3=carown

g z4=time

g z5=tran

global zlist "z1 z2 z3 z4 z5"

*make y_stone=x-p�w, and gross instrument, y_tilda=x-p�w^bar

g x=log_y

g y_stone=x

g y_tilda=x

14



forvalues num=1(1)$nprice {

egen mean_s�num�=mean(s�num�)

replace y_tilda=y_tilda-mean_s�num�*p�num�

replace y_stone=y_stone-s�num�*p�num�

}

*list of functions of (implicit) utility, y: �ll them in, and add them to ylist below

*alternatively, �ll ylist and yinstlist with the appropriate variables and instruments

g y=y_stone

g y_inst=y_tilda

global ylist ""

global yinstlist ""

forvalues j=1(1)$npowers {

g y�j�=y^�j�

g y�j�_inst=y_inst^�j�

global ylist "$ylist y�j�"

global yinstlist "$yinstlist y�j�_inst"

}

*set up the equations and put them in a list

global eqlist ""

forvalues num=1(1)$neq {

global eq�num�"(s�num�$ylist $zlist np1-np$neq)"

macro list eq�num�

global eqlist "$eqlist n$eq�num�"

}

*create linear constraints and put them in a list, called conlist

global conlist ""

forvalues j=1(1)$neq {

local jplus1=�j�+1

forvalues k=�jplus1�(1)$neq {

constraint �j��k�[s�j�]np�k�=[s�k�]np�j�

global conlist "$conlist �j��k�"

}

}

*�rst get a pre-estimate to create the instrument:

*run three stage least squares on the model with no py, pz or yz interactions, and then iterate to convergence

* note that the di¤erence in predicted values between p and p=0 is Ap

replace y=y_stone

g y_old=y_stone

g y_change=0
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scalar crit_test=1

while crit_test>$conv_crit {

quietly reg3 $eqlist, constr($conlist) endog($ylist) exog($yinstlist)

quietly replace pAp=0

replace y_old=y

forvalues j=1(1)$neq {

quietly predict s�j�hat, equation(s�j�)

}

forvalues j=1(1)$neq {

quietly replace np�j�=0

}

forvalues j=1(1)$neq {

quietly predict s�j�hat_p0, equation(s�j�)

}

forvalues j=1(1)$neq {

quietly replace np�j�=np�j�_backup

quietly replace Ap�j�=s�j�hat-s�j�hat_p0

quietly replace pAp=pAp+np�j�*Ap�j�

quietly drop s�j�hat s�j�hat_p0

}

replace pAp=int(1000000*pAp+0.5)/1000000

summ pAp

quietly replace y=y_stone+0.5*pAp

forvalues j=1(1)$npowers {

quietly replace y�j�=y^�j�

}

quietly replace y_change=abs(y-y_old)

summ y_change

scalar crit_test=r(max)

display �k�

scalar list crit_test

summ y_stone y y_old

}

*now, create the instrument

quietly replace y_inst=y_tilda+0.5*pAp

forvalues j=1(1)$npowers {

quietly replace y�j�_inst=y_inst^�j�

}

*run three stage least squares on the model with no py, pz or yz interactions, and then iterate to convergence
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* note that the di¤erence in predicted values between p and p=0 is Ap

*reset the functions of y

replace y=y_stone

forvalues j=1(1)$npowers {

quietly replace y�j�=y^�j�

}

replace y_old=y_stone

replace y_change=0

scalar crit_test=1

while crit_test>$conv_crit {

quietly reg3 $eqlist, constr($conlist) endog($ylist) exog($yinstlist)

quietly replace pAp=0

replace y_old=y

forvalues j=1(1)$neq {

quietly predict s�j�hat, equation(s�j�)

}

forvalues j=1(1)$neq {

quietly replace np�j�=0

}

forvalues j=1(1)$neq {

quietly predict s�j�hat_p0, equation(s�j�)

}

forvalues j=1(1)$neq {

quietly replace np�j�=np�j�_backup

quietly replace Ap�j�=s�j�hat-s�j�hat_p0

quietly replace pAp=pAp+np�j�*Ap�j�

quietly drop s�j�hat s�j�hat_p0

}

replace pAp=int(1000000*pAp+0.5)/1000000

summ pAp

quietly replace y=y_stone+0.5*pAp

forvalues j=1(1)$npowers {

quietly replace y�j�=y^�j�

}

quietly replace y_change=abs(y-y_old)

summ y_change

scalar crit_test=r(max)

display �k�

scalar list crit_test
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summ y_stone y y_old

}

*note that reported standard errors are wrong for iterated estimates

reg3 $eqlist, constr($conlist) endog($ylist) exog($yinstlist)

8.2 EASI with Two-Way Interactions

* Tricks with Hicks: The EASI demand system

* Arthur Lewbel and Krishna Pendakur

* 2008, American Economic Review

* Herein, �nd Stata code to estimate a demand system with neq equations, nprice prices,

* ndem demographic characteristics and npowers powers of implicit utility

* This Stata code estimates Lewbel and Pendakur�s EASI demand system using approximate

* OLS estimation and iterated linear 3SLS estimation. Note that iterated linear 3SLS is

* not formally equivalent to fully nonlinear 3SLS (which does not exist in Stata).

* However, in some contexts they are asymptotically equivalent (see, e.g., Blundell and

* Robin 1999 and Dominitz and Sherman 2005), and we have veri�ed in our data that

* coe¢ cients estimated using iterated linear 3SLS are within 0.001 of those

* estimated using fully nonlinear 3SLS.

* Code to estimate the fully nonlinear 3SLS/GMM version in TSP is available on request

* from the authors.

* This model includes pz,py,zy interactions. See �iterated 3sls without pz,py,zy.do�for

* shorter code to estimate the model without interactions.

set more o¤

macro drop _all

use "C:nprojectsnhixtrixnrevisionnhixdata.dta", clear

* set number of equations and prices and demographic characteristics and convergence criterion

global neqminus1 "7"

global neq "8"

global nprice "9"

global ndem 5

global npowers "5"

* set a convergence criterion and choose whether or not to base it on parameters

global conv_crit "0.00000000000001"

scalar conv_param=1

scalar conv_y=0

*note set the matrix size big enough to do constant,y,z,p,zp,yp,yz

global matsize_value=100+$neq*(1+$npowers+$ndem+$neq*(1+$ndem+1)+$ndem)

set matsize $matsize_value

*data labeling conventions:
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* data weights: wgt (replace with 1 if unweighted estimation is desired)

* budget shares: s1 to sneq

* prices: p1 to nprice

* log total expenditures: x

* implicit utility: y, or related names

* demographic characteristics: z1 to zndem

g obs_weight=wgt

g s1=sfoodh

g s2=sfoodr

g s3=srent

g s4=soper

g s5=sfurn

g s6=scloth

g s7=stranop

g s8=srecr

g s9=spers

g p1=pfoodh

g p2=pfoodr

g p3=prent

g p4=poper

g p5=pfurn

g p6=pcloth

g p7=ptranop

g p8=precr

g p9=ppers

* polynomial systems are easier to estimate if you normalise the variable in the polynomial

g x=log_y

*egen mean_log_y=mean(log_y)

*replace x=log_y-mean_log_y

* normalised prices are what enter the demand system

* generate normalised prices, backup prices (they get deleted), and pAp, pBp

global nplist ""

forvalues j=1(1)$neq {

g np�j�=p�j�-p$nprice

global nplist "$nplist np�j�"

}

forvalues j=1(1)$neq {

g np�j�_backup=np�j�

g Ap�j�=0
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g Bp�j�=0

}

g pAp=0

g pBp=0

*list demographic characteristics: �ll them in, and add them to zlist below

g z1=age

g z2=hsex

g z3=carown

g z4=tran

g z5=time

global zlist "z1 z2 z3 z4 z5"

*make pz interactions

global npzlist ""

forvalues j=1(1)$neq {

forvalues k=1(1)$ndem {

g np�j�z�k�=np�j�*z�k�

global npzlist "$npzlist np�j�z�k�"

}

}

*make y_stone=x-p�w, and gross instrument, y_tilda=x-p�w^bar

g y_stone=x

g y_tilda=x

forvalues num=1(1)$nprice {

egen mean_s�num�=mean(s�num�)

replace y_tilda=y_tilda-mean_s�num�*p�num�

replace y_stone=y_stone-s�num�*p�num�

}

* make list of functions of (implicit) utility, y: �ll them in, and add them to ylist below

* alternatively, �ll ylist and yinstlist with the appropriate variables and instruments

g y=y_stone

g y_inst=y_tilda

global ylist ""

global yinstlist ""

global yzlist ""

global yzinstlist ""

global ynplist ""

global ynpinstlist ""

forvalues j=1(1)$npowers {

g y�j�=y^�j�
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g y�j�_inst=y_inst^�j�

global ylist "$ylist y�j�"

global yinstlist "$yinstlist y�j�_inst"

}

forvalues k=1(1)$ndem {

g yz�k�=y*z�k�

g yz�k�_inst=y_inst*z�k�

global yzlist "$yzlist yz�k�"

global yzinstlist "$yzinstlist yz�k�_inst"

}

forvalues k=1(1)$neq {

g ynp�k�=y*np�k�

g ynp�k�_inst=y_inst*np�k�

global ynplist "$ynplist ynp�k�"

global ynpinstlist "$ynpinstlist ynp�k�_inst"

}

*set up the equations and put them in a list

global eqlist ""

forvalues num=1(1)$neq {

global eq�num�"(s�num�$ylist $zlist $yzlist $nplist $ynplist $npzlist)"

macro list eq�num�

global eqlist "$eqlist n$eq�num�"

}

*create linear constraints and put them in a list, called conlist

global conlist ""

forvalues j=1(1)$neq {

local jplus1=�j�+1

forvalues k=�jplus1�(1)$neq {

constraint �j��k�[s�j�]np�k�=[s�k�]np�j�

global conlist "$conlist �j��k�"

}

}

*add constraints for yp interactions

forvalues j=1(1)$neq {

local jplus1=�j�+1

forvalues k=�jplus1�(1)$neq {

constraint �j��k�0 [s�j�]ynp�k�=[s�k�]ynp�j�

global conlist "$conlist �j��k�0"

}
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}

* add constraints for pz interactions

forvalues h=1(1)$ndem {

forvalues j=1(1)$neq {

local jplus1=�j�+1

forvalues k=�jplus1�(1)$neq {

constraint �j��k��h�[s�j�]np�k�z�h�=[s�k�]np�j�z�h�

global conlist "$conlist �j��k��h�"

}

}

}

*an approximate model would use one of:

*reg3 $eqlist [aweight=obs_weight], constr($conlist) endog($ylist $ynplist $yzlist) exog($yinstlist $ynpin-

stlist $yzinstlist)

*sureg $eqlist, constr($conlist)

*sureg $eqlist

*the exact model requires two steps: step 1) get a pre-estimate to construct the intrument, step 2) use the

instrument to estimate the model

*�rst get a pre-estimate to create the instrument:

*run three stage least squares on the model with py, pz or yz interactions, and then iterate to convergence,

* constructing y=(y_stone+0.5*p�A(z)p)/(1-0.5*p�Bp) at each iteration

* note that the di¤erence in predicted values for y=1 between p and p=0 is A(z)p, and

* that the di¤erence in di¤erence in predicted values for y=1 vs y=0 between p and p=0 is Bp

replace y=y_stone

g y_backup=y_stone

g y_old=y_stone

g y_change=0

scalar crit_test=1

scalar iter=0

while crit_test>$conv_crit {

scalar iter=iter+1

quietly reg3 $eqlist [aweight=obs_weight], constr($conlist) endog($ylist $ynplist $yzlist) exog($yinstlist

$ynpinstlist $yzinstlist)

if (iter>1) {

matrix params_old=params

}

matrix params=e(b)

quietly replace pAp=0

quietly replace pBp=0
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quietly replace y_old=y

quietly replace y_backup=y

*predict with y=1

*generate rhs vars,interactions with y=1

forvalues j=1(1)$npowers {

quietly replace y�j�=1

}

forvalues j=1(1)$neq {

quietly replace ynp�j�=np�j�

}

forvalues j=1(1)$ndem {

quietly replace yz�j�=z�j�

}

*generate predicted values

forvalues j=1(1)$neq {

quietly predict s�j�hat_y1, equation(s�j�)

}

*set all p, pz, py to zero

foreach yvar in $nplist $ynplist $npzlist {

quietly replace �yvar�=0

}

forvalues j=1(1)$neq {

quietly predict s�j�hat_y1_p0, equation(s�j�)

}

*refresh p,pz

forvalues j=1(1)$neq {

quietly replace np�j�=np�j�_backup

forvalues k=1(1)$ndem {

quietly replace np�j�z�k�=np�j�_backup*z�k�

}

}

*generate rhs vars,interactions with y=0

foreach yvar in $ylist $ynplist $yzlist {

quietly replace �yvar�=0

}

*generate predicted values

forvalues j=1(1)$neq {
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quietly predict s�j�hat_y0, equation(s�j�)

}

*set all p, pz, py to zero

foreach yvar in $nplist $ynplist $npzlist {

quietly replace �yvar�=0

}

forvalues j=1(1)$neq {

quietly predict s�j�hat_y0_p0, equation(s�j�)

}

*refresh p only

forvalues j=1(1)$neq {

quietly replace np�j�=np�j�_backup

}

*�ll in pAp and pBp

forvalues j=1(1)$neq {

quietly replace Ap�j�=s�j�hat_y0-s�j�hat_y0_p0

quietly replace pAp=pAp+np�j�*Ap�j�

quietly replace Bp�j�=(s�j�hat_y1-s�j�hat_y1_p0)-(s�j�hat_y0-s�j�hat_y0_p0)

quietly replace pBp=pBp+np�j�*Bp�j�

quietly drop s�j�hat_y0 s�j�hat_y0_p0 s�j�hat_y1 s�j�hat_y1_p0

}

*round pAp and pBp to the nearest millionth, for easier checking

quietly replace pAp=int(1000000*pAp+0.5)/1000000

quietly replace pBp=int(1000000*pBp+0.5)/1000000

*recalculate y,yz,py,pz

quietly replace y=(y_stone+0.5*pAp)/(1-0.5*pBp)

forvalues j=1(1)$npowers {

quietly replace y�j�=y^�j�

}

forvalues j=1(1)$ndem {

quietly replace yz�j�=y*z�j�

}

*refresh py,pz

forvalues j=1(1)$neq {

quietly replace ynp�j�=y*np�j�_backup

forvalues k=1(1)$ndem {

quietly replace np�j�z�k�=np�j�_backup*z�k�

}
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}

if (iter>1 & conv_param==1) {

matrix params_change=(params-params_old)

matrix crit_test_mat=(params_change*(params_change�))

svmat crit_test_mat, names(temp)

scalar crit_test=temp

drop temp

}

quietly replace y_change=abs(y-y_old)

quietly summ y_change

if(conv_y==1) {

scalar crit_test=r(max)

}

display "iteration " iter

scalar list crit_test

summ y_change y_stone y y_old pAp pBp

}

*now, create the instrument, and its interactions yp and yz

quietly replace y_inst=(y_tilda+0.5*pAp)/(1-0.5*pBp)

forvalues j=1(1)$npowers {

quietly replace y�j�_inst=y_inst^�j�

}

forvalues j=1(1)$neq {

replace ynp�j�_inst=y_inst*np�j�

}

forvalues j=1(1)$ndem {

replace yz�j�_inst=y_inst*z�j�

}

*with nice instrument in hand, run three stage least squares on the model, and then iterate to convergence

replace y_old=y

replace y_change=0

scalar iter=0

scalar crit_test=1

while crit_test>$conv_crit {

scalar iter=iter+1

quietly reg3 $eqlist [aweight=obs_weight], constr($conlist) endog($ylist $ynplist $yzlist) exog($yinstlist

$ynpinstlist $yzinstlist)

if (iter>1) {

matrix params_old=params
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}

matrix params=e(b)

quietly replace pAp=0

quietly replace pBp=0

quietly replace y_old=y

quietly replace y_backup=y

*predict with y=1

*generate rhs vars,interactions with y=1

forvalues j=1(1)$npowers {

quietly replace y�j�=1

}

forvalues j=1(1)$neq {

quietly replace ynp�j�=np�j�

}

forvalues j=1(1)$ndem {

quietly replace yz�j�=z�j�

}

*generate predicted values

forvalues j=1(1)$neq {

quietly predict s�j�hat_y1, equation(s�j�)

}

*set all p, pz, py to zero

foreach yvar in $nplist $ynplist $npzlist {

quietly replace �yvar�=0

}

forvalues j=1(1)$neq {

quietly predict s�j�hat_y1_p0, equation(s�j�)

}

*refresh p,pz

forvalues j=1(1)$neq {

quietly replace np�j�=np�j�_backup

forvalues k=1(1)$ndem {

quietly replace np�j�z�k�=np�j�_backup*z�k�

}

}

*generate rhs vars,interactions with y=0

foreach yvar in $ylist $ynplist $yzlist {
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quietly replace �yvar�=0

}

*generate predicted values

forvalues j=1(1)$neq {

quietly predict s�j�hat_y0, equation(s�j�)

}

*set all p, pz, py to zero

foreach yvar in $nplist $ynplist $npzlist {

quietly replace �yvar�=0

}

forvalues j=1(1)$neq {

quietly predict s�j�hat_y0_p0, equation(s�j�)

}

*refresh p only

forvalues j=1(1)$neq {

quietly replace np�j�=np�j�_backup

}

*�ll in pAp and pBp

forvalues j=1(1)$neq {

quietly replace Ap�j�=s�j�hat_y0-s�j�hat_y0_p0

quietly replace pAp=pAp+np�j�*Ap�j�

quietly replace Bp�j�=(s�j�hat_y1-s�j�hat_y1_p0)-(s�j�hat_y0-s�j�hat_y0_p0)

quietly replace pBp=pBp+np�j�*Bp�j�

quietly drop s�j�hat_y0 s�j�hat_y0_p0 s�j�hat_y1 s�j�hat_y1_p0

}

*round pAp and pBp to the nearest millionth, for easier checking

quietly replace pAp=int(1000000*pAp+0.5)/1000000

quietly replace pBp=int(1000000*pBp+0.5)/1000000

*recalculate y,yz,py,pz

quietly replace y=(y_stone+0.5*pAp)/(1-0.5*pBp)

forvalues j=1(1)$npowers {

quietly replace y�j�=y^�j�

}

forvalues j=1(1)$ndem {

quietly replace yz�j�=y*z�j�

}

*refresh py,pz

forvalues j=1(1)$neq {
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quietly replace ynp�j�=y*np�j�_backup

forvalues k=1(1)$ndem {

quietly replace np�j�z�k�=np�j�_backup*z�k�

}

}

if (iter>1 & conv_param==1) {

matrix params_change=(params-params_old)

matrix crit_test_mat=(params_change*(params_change�))

svmat crit_test_mat, names(temp)

scalar crit_test=temp

drop temp

}

quietly replace y_change=abs(y-y_old)

quietly summ y_change

if(conv_y==1) {

scalar crit_test=r(max)

}

display "iteration " iter

scalar list crit_test

summ y_change y_stone y y_old pAp pBp

}

*note that reported standard errors are wrong for iterated estimates

reg3 $eqlist [aweight=obs_weight], constr($conlist) endog($ylist $ynplist $yzlist) exog($yinstlist $ynpinstlist

$yzinstlist)
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